
COGS	108	-	MBTI	Prediction	Based	on	Twitter	Content

Video	Link
https://drive.google.com/file/d/1e1lfoOPIJFDOfJfOw1iD4m76-8Jn9v3Q/view	(https://drive.google.com/file/d/1e1lfoOPIJFDOfJfOw1iD4m76-8Jn9v3Q/view)

Permissions
Place	an	 X 	in	the	appropriate	bracket	below	to	specify	if	you	would	like	your	group's	project	to	be	made	available	to	the	public.	(Note	that	student	names
will	be	included	(but	PIDs	will	be	scraped	from	any	groups	who	include	their	PIDs).

[X]	YES	-	make	available
[]	NO	-	keep	private

Overview
In	this	project,	we	explored	the	relationship	between	a	user’s	Twitter	content	and	their	MBTI	classification.	We	used	Twitter	and	MBTI	information	from	a
dataset	that	conatains	8,328	users	and	analyzed	5	tweets	per	user	using	sentiment	analysis	and	frequency	distribution	plots.	We	then	used	SVM	to	train	a
model	that	predicts	a	user's	MBTI	type	based	on	their	Twitter	content.	Our	results	indicate	that	the	relationship	between	the	variables	analyzed	and	a
user’s	MBTI	type	is	inconclusive.

Names
Alexa	Barbosa
Audrey	Chung
Ashley	Ho
Ariann	Manlangit
Akhila	Nivarthi

Research	Question
Can	we	predict	how	an	individual's	MBTI	is	classified	based	on	the	content	they	share	on	Twitter,	specifically	the	text	sentiment	and	word	frequency	of
their	posts,	as	well	as	average	user	tweet	statistics	(average	tweet	length,	average	mentions	count,	average	media	count,	and	average	retweet	count)?

Background	&	Prior	Work

https://drive.google.com/file/d/1e1lfoOPIJFDOfJfOw1iD4m76-8Jn9v3Q/view

The	MBTI	has	been	a	topic	of	interest	in	personality	psychology	for	many	years,	and	despite	the	criticisms	of	the	tool,	it	has	yielded	valuable	insights	into
personality	differences	and	continues	to	be	extensively	utilized	in	various	contexts.	The	Myers-Briggs	Type	Indicator	(MBTI)	identifies	people’s	personality
through	a	combination	of	4	identifying	letters:	(E)	extrovert,	(I)	introvert,	(S)	sensor,	(N)	intuitive,	(T)	thinking,	(F)	feeling,	(J)	judge,	and	(P)	perceive.	Each
MBTI	has	a	name	and	characteristics	for	each	letter	combination.	For	example,	INFPs	are	known	as	“the	Mediator”	[^simkus].	Personality	is	a	complex
construct	that	is	influenced	by	various	factors,	including	genetics,	upbringing,	and	life	experiences.	Therefore,	any	research	exploring	the	relationship
between	social	media	behavior	and	personality	should	be	conducted	with	caution	and	acknowledge	the	limitations	and	potential	biases	of	the
methodology.	An	individual’s	personality	can	be	predicted	based	on	the	content	they	share	on	Twitter,	but	it	would	require	a	large	dataset	of	tweets	from
individuals	with	known	MBTI	types,	and	sophisticated	natural	language	processing,	and	machine	learning	techniques	to	analyze	the	content	of	these
tweets.

Some	prior	work	has	been	made	on	the	topic	of	investigating	the	relationship	between	one’s	social	media	profiles	and	their	MBTI	personality.	The	earliest
research	dates	back	to	2006	and	showed	that	using	various	sets	of	words	found	in	blog	content,	researchers	were	able	to	accurately	predict	the
personalities	of	blog	users.	However,	the	work	done	was	based	on	small	and	homogeneous	samples.	More	recently,	scholars	have	focused	towards
improving	the	accuracy	of	predictions	with	the	help	of	various	machine	learning	algorithms.	One	example	is	a	Rutgers	University	Masters	thesis	written	by
Weiling	Li	in	2021	that	used	Twitter	data	to	predict	user	MBTI	classification.	Li’s	research	was	based	on	4000	Twitter	users	who	self-reported	their
personality	types	and	425,752	tweets	these	users	posted.	Li	utilized	two-sample	t-tests,	stepwise	logistic	regressions	to	conclude	that	there	exists	a	strong
association	between	an	individual’s	social	media	activity	and	their	MBTI	type	[^li].	Li	then	used	machine	learning	algorithms	such	as	K	Nearest	Neighbors
(KNN),	Decision	Tree,	and	Support	Vector	Machine	(SVM)	to	predict	MBTI	based	on	social	media	data,	achieving	a	model	with	an	average	test	accuracy
of	67.6%.	In	the	study,	Li	comments	that	obtaining	information	through	social	media	platforms	offers	longitudinal	data,	enabling	researchers	to	access
information	from	users	over	a	period	of	time	and	measure	changes	in	their	activities	[^li].

In	another	study	from	2021,	members	of	the	Department	of	Computer	Science	and	Engineering	at	BMS	University	of	Technology	and	Management
conducted	a	study	that	used	machine	learning	classifiers	and	sentiment	analysis	of	Twitter	data	to	predict	MBTI.	The	sentiment	analysis	done	in	this	study
used	Bidirectional	Encoder	Representation	from	Transformers	(BERT),	which	is	able	to	understand	the	difference	between	the	sentiment	of	words	when
they	are	used	in	different	contexts	[^kaushal	et	al.].	Similar	to	Li’s	study,	Kaushal	et	al	used	KNN,	SVM,	logistic	regression,	decision	tree,	random	forest
and	stochastic	gradient	descent	to	create	various	models	to	predict	personality	type	based	on	tweets.	Kaushal	et	al	concluded	that	MBTI	type	can	indeed
be	predicted	by	tweet	content	and	that	SVM	performed	better	than	the	other	algorithms	[^kaushal	et	al.].	At	the	end	of	the	study,	Kaushal	et	al	also
comments	that	this	kind	of	prediction	model	could	be	expanded	to	be	used	in	the	recruitment	process	for	recruiters	to	learn	more	about	the	personality	of
potential	hires.	In	addition,	this	work	could	also	be	used	to	develop	health	applications	that	focus	on	early	protection,	intervention,	and	proper	treatment	of
various	physical	and	mental	health	issues	[^kaushal	et	al].

References:

[^simkus]:	Simkus,	J.	(23	Apr	2023)	“How	the	Myers-Briggs	Type	Indicator	Works:	16	Personality	Types.”	Simply	Psychology.
https://www.simplypsychology.org/the-myers-briggs-type-indicator.html	(https://www.simplypsychology.org/the-myers-briggs-type-indicator.html)
[^li]:	Li,	W.	(May	2021)	"Predicting	MBTI	Personality	Type	of	Twitter	Users."	Rutgers	University-Camden,	Master's	Thesis.
https://rucore.libraries.rutgers.edu/rutgers-lib/65730/PDF/1/play/	(https://rucore.libraries.rutgers.edu/rutgers-lib/65730/PDF/1/play/)
[^kaushal	et	al.]:	Kaushal,	P.	et	al.	(08	Dec	2021)	"Myers-briggs	Personality	Prediction	and	Sentiment	Analysis	of	Twitter	using	Machine	Learning
Classifiers	and	BERT."	International	Journal	of	Information	Technology	and	Computer	Science	(IJITCS),	Vol.13,	No.6,	pp.48-60.https://www.mecs-
press.org/ijitcs/ijitcs-v13-n6/IJITCS-V13-N6-4.pdf	(https://www.mecs-press.org/ijitcs/ijitcs-v13-n6/IJITCS-V13-N6-4.pdf)

Hypothesis
We	hypothesize	that	there	is	an	underlying	relationship	between	the	classification	of	an	individual's	MBTI	and	the	content	of	the	tweets	they	post.	We
believe	that	textual	components	such	as	word	choice,	capitalization,	punctuation	usage,	and	emoji	usage,	as	well	as	the	quantitative	measures	such	as
tweet	length	and	tweet	frequency,	are	indicative	of	an	individual’s	personality	traits.	Our	background	research	has	indicated	that	individuals	are	likely	to
express	their	true	personas	online	and	that	often	times	how	we	identify	in	real	life	can	be	portrayed	through	our	online	presence.

Dataset(s)
Dataset	Name:	Twitter	MBTI	Personality	Types
Link	to	the	dataset:	https://www.kaggle.com/datasets/sanketrai/twitter-mbti-dataset	(https://www.kaggle.com/datasets/sanketrai/twitter-mbti-dataset)
Number	of	observations:	8,328

This	dataset	contains	information	sourced	from	Twitter	API	about	8,328	Twitter	users	that	have	self-reported	their	MBTI	types	in	their	profile	descriptions.
The	dataset	is	comprised	of	three	csv	files.	The	first	file	stores	users'	MBTI	classifications.	The	second	file	includes	publicly-availiable	data	about	their
account	such	as	their	username,	follower	counts,	location,	and	verification	status.	The	final	file	contains	users'	200	most	recent	tweets	posted	on	or	before
March	31,	2020.

Setup

https://www.simplypsychology.org/the-myers-briggs-type-indicator.html
https://rucore.libraries.rutgers.edu/rutgers-lib/65730/PDF/1/play/
https://www.mecs-press.org/ijitcs/ijitcs-v13-n6/IJITCS-V13-N6-4.pdf
https://www.kaggle.com/datasets/sanketrai/twitter-mbti-dataset

In	[1]:

#	imports

import	pandas	as	pd
import	numpy	as	np
import	seaborn	as	sns
import	matplotlib.pyplot	as	plt
plt.rcParams['figure.figsize']	=	(17,	7)
plt.rcParams.update({'font.size':	14})

from	langdetect	import	detect,	LangDetectException
from	nltk.tokenize	import	word_tokenize
from	cleantext	import	clean

import	warnings
warnings.filterwarnings('ignore')

import	nltk
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('vader_lexicon')

In	[2]:

#	first	csv	file	from	dataset
#	contains	unique	id	value	for	each	user	and	their	mbti

df_mbti	=	pd.read_csv('mbti_labels.csv')
df_mbti.head()

In	[3]:

#	check	shape

df_mbti.shape

In	[4]:

#	check	column	data	types

df_mbti.dtypes

Since	the	GPL-licensed	package	`unidecode`	is	not	installed,	using	Python's	`unicodedata`	package	wh
ich	yields	worse	results.
[nltk_data]	Downloading	package	stopwords	to	/home/a1ho/nltk_data...
[nltk_data]			Package	stopwords	is	already	up-to-date!
[nltk_data]	Downloading	package	punkt	to	/home/a1ho/nltk_data...
[nltk_data]			Package	punkt	is	already	up-to-date!
[nltk_data]	Downloading	package	vader_lexicon	to
[nltk_data]					/home/a1ho/nltk_data...
[nltk_data]			Package	vader_lexicon	is	already	up-to-date!

Out[1]:

True

Out[2]:

id mbti_personality

0 160881623 infp

1 28968838 infp

2 2325006565 infp

3 907848145 infp

4 1330237585 infp

Out[3]:

(8328,	2)

Out[4]:

id																			int64
mbti_personality				object
dtype:	object

In	[5]:

#	second	csv	file	from	dataset
#	contains	user	info	including	display	name,	bio,	location,	follower	count,	avg	tweet	length

df_user	=	pd.read_csv('user_info.csv')
df_user.head()

In	[6]:

#	check	shape

df_user.shape

Out[5]:

id id_str name screen_name location description verified followers_count friends_count listed_count ... total_mentions_count

0 160881623 160881623

Biam	
32

Days
AC	

_AiBiam Hateno	Village

	{INFP}
{ESP/ENG}

•	Current
obsession:
Unchart...

False 1904 782 67 ...

1 28968838 28968838 pao paoacflores Mandaluyong/StaCruz
Laguna	PH

right
brained

lefty.	infp.
hufflepuff.
collect...

False 14135 1338 47 ...

2 2325006565 2325006565

pengu
❤�@
青鳥
王国

PenguPooh PengUstine	CCTV

������
｜♋E/INFP
｜和↔英｜

20⬆｜
chaotic	bi｜
高浮上｜
181001｜

佐...

False 1223 604 31 ...

3 907848145 907848145 lynn
bean sukaihan Singapore

eng,	中	|
exo,	x-exo
and	wayv		|
22	|	scorpio

...

False 8512 312 147 ...

4 1330237585 1330237585 Sei nemuiryuu NaN

【INFP】
He/Him	✧

CEO	of
gothic	idols
★	蘭子P

False 1805 340 69 ...

5	rows	×	28	columns

Out[6]:

(8328,	28)

In	[7]:

#	check	column	data	types

df_user.dtypes

In	[8]:

#	third	csv	file	from	dataset
#	contains	~200	tweets	per	user	id

df_tweets	=	pd.read_csv('user_tweets.csv')
df_tweets.head()

Out[7]:

id																																int64
id_str																												int64
name																													object
screen_name																						object
location																									object
description																						object
verified																											bool
followers_count																			int64
friends_count																					int64
listed_count																						int64
favourites_count																		int64
statuses_count																				int64
number_of_quoted_statuses									int64
number_of_retweeted_statuses						int64
total_retweet_count															int64
total_favorite_count														int64
total_hashtag_count															int64
total_url_count																			int64
total_mentions_count														int64
total_media_count																	int64
number_of_tweets_scraped								float64
average_tweet_length												float64
average_retweet_count											float64
average_favorite_count										float64
average_hashtag_count											float64
average_url_count															float64
average_mentions_count										float64
average_media_count													float64
dtype:	object

Out[8]:

id tweet_1 tweet_2 tweet_3 tweet_4 tweet_5 tweet_6 tweet_7

0 160881623
@andresitonieve	Me

he	quedado	igual
estoy	llor...

RT	@heikala_art:
Fragment	of	a

Star		Celebrat...

RT	@bananamisart:	I
heard	it	was	BOtW's

3rd	an...

RT	@night_sprout:
new	banner	time!!

https://t....

RT	@dealer_rug:	Why	is
everyone	buying	toilet	...

@andresitonieve	Amo
el	diseño	de	este

personaje

@Tchaigothsky:
UNFORTUNATELY

I	CANT	STOP
WA...

1 28968838

PLEASE	VOTE,
VOTE,	VOTE	FOR
AMYBETH!	thanks!

i...

RT	@sofeimous:
Look	at	this	cutie!

Thank	you	f...

'kelangan	talaga
lumipat	ng	bahay,	pero

di	ka	...

forgiveness	and
justice.\nforgiveness

with	jus...

hirap	maging	babae	no?
#PamilyaKoPagkabuwag

eh	damang-dama	ko
yung	pagod	ni	luz,	yung

pago...

oo	nga	no?	makes
you	think,	what's

your	deal-b...

2 2325006565

みんなからの匿名質
問を募集中！\n\nこん
な質問に答えてるよ

\n●	Hello…\n	thi...

RT
@shokami_movie:
今日は…#佐藤の
日	\n\n我らが座長

#佐藤大樹...

RT	@taiki__official:	今
日は	#佐藤の日	らしい

です�

RT	@Auditionblue:
#Auditionblue	４月
号発売中です！\n本

日３...

RT	@generationsfext:
#GENERATIONS

WORLD	TOUR	2...

PenguPooh\nいいねさ
れた数:10(前日比:+6)\n
フォローした数:5(前日

比:+...

PenguPooh\nツ
イート数:27(前日
比:+5)\nRTした

数:19(前日比:+7)\...

3 907848145
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

RT	@j__nmyeon:	since
we're	talking	about

suhø,...

I	am	supporting	this
fundraising	page

https://...

RT	@cubsie_:	Sun	and
moon	outfits
https://t.co...

@mouthysehun	that
looks	like	porridge	AND

TO	D...

@weareoneEXO:
Au	Revoir,	Paris
(세훈)\n\n��ht...

4 1330237585
@DaryKiri_	Gracias	a

ti	por	apreciarlo	�
✌�

RT	@DaryKiri_:
@nemuiryuu

Gracias	por	poner
en...

https://t.co/y8rrc8yJHi
https://t.co/Xte4LM6LyK

RT	@izzyhumair:	Rt
if	you	give	Goths

permissio...

@ageyoru	Dw	you’re
absolutely	right,	stan

heal... https://t.co/wn7bh40tGU

stop	asking	for	my
money	cygames	I

don’t	have	any

5	rows	×	201	columns

In	[9]:

#	check	shape

df_tweets.shape

In	[10]:

#	check	column	data	types

df_tweets.dtypes

Data	Cleaning
STEP	1

Since	users'	MBTI	classifications	are	stored	in	 df_mbti ,	their	profile	information	(including	username,	bio,	follower	count,	average	tweet	length,	etc.)	is
stored	in	 df_user ,	and	their	tweets	are	stored	in	 df_tweets ,	we	need	to	merge	the	three	dataframes	using	the	unique	user	'id'	column.	We	will	store
the	merged	dataframes	in	the	variable	 df .

df_mbti 	and	 df_user 	merge	easily	since	the	'id'	column	in	both	dataframes	are	of	type	 int64 ,	which	we	saw	above	from	using	dtypes.	For	
df_tweets ,	since	the	values	stored	in	the	'id'	column	are	of	type	 object ,	we	will	write	a	function	that	converts	the	types	before	merging.

Also,	since	there	are	around	200	tweets	per	user	and	about	8000	users,	we	will	only	be	taking	5	tweets	per	user	to	increase	computational	efficiency.

In	[11]:

#	merge	`df_mbti`	and	`df_user`	using	unique	user	'id'	column

df	=	pd.merge(df_mbti,	df_user,	on	=	'id')

In	[12]:

#	drop	unneeded	columns	in	the	merged	dataframe

df	=	df[['id',	'mbti_personality',	'average_mentions_count',	'average_tweet_length',	
									'average_media_count',	'average_retweet_count']]

In	[13]:

#	function	to	change	the	type	of	'id'	column	in	df_tweets
#	certain	values	in	this	column	cannot	be	directly	casted	to	int	(since	they	contain	characters)
#	thus	every	'id'	that	contains	non-numeric	values	will	be	replaced	with	NaN

def	id_int(in_value):
				try:
								output	=	pd.to_numeric(in_value).astype(int)
				
				except:
								output	=	np.nan
				
				return	output

In	[14]:

#	apply	id_int	function	to	the	'id'	column	in	df_tweets

df_tweets['id']	=	df_tweets['id'].apply(id_int)

Out[9]:

(24598,	201)

Out[10]:

id											object
tweet_1						object
tweet_2						object
tweet_3						object
tweet_4						object
														...		
tweet_196				object
tweet_197				object
tweet_198				object
tweet_199				object
tweet_200				object
Length:	201,	dtype:	object

In	[15]:

#	only	take	10	tweets	per	user

df_tweets	=	df_tweets.drop(df_tweets.loc[:,	'tweet_6':],	axis	=	1)

In	[16]:

#	merge	`df_tweets`	with	`df`	using	unique	user	'id'	column

df	=	pd.merge(df,	df_tweets,	on	=	'id')
df.head()

STEP	2

Now	that	the	3	dataframes	are	merged	into	one	single	dataframe	 df ,	we	will	check	for	any	missing	values	and	drop	any	rows/columns	containing
missing	data.

In	[17]:

#	drop	all	rows	and	columns	with	missing	info

df	=	df.dropna(axis	=	0)
df	=	df.dropna(axis	=	1)
df

Out[16]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1 tweet_2

0 160881623 infp 0.695000 11.785000 0.570000 3003.580000
@andresitonieve	Me

he	quedado	igual
estoy	llor...

RT	@heikala_art:
Fragment	of	a

Star		Celebrat...

1 28968838 infp 0.780000 16.150000 0.170000 3718.745000

PLEASE	VOTE,
VOTE,	VOTE	FOR
AMYBETH!	thanks!

i...

RT	@sofeimous:
Look	at	this	cutie!

Thank	you	f...

2 2325006565 infp 0.854271 9.668342 0.201005 3722.211055

みんなからの匿名質
問を募集中！\n\nこん
な質問に答えてるよ

\n●	Hello…\n	thi...

@shokami_movie:
今日は…#佐藤の
日	\n\n我らが座長

#佐藤大樹...

3 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

4 1330237585 infp 0.635000 7.655000 0.495000 827.370000
@DaryKiri_	Gracias	a

ti	por	apreciarlo	�
✌�

RT	@DaryKiri_:
@nemuiryuu

Gracias	por	poner

STEP	3

Since	we	will	be	performing	sentiment	analysis,	we	will	use	the	 detect 	and	 LangDetectException 	from	Python's	 langdetect 	library	to	filter	out
tweets	that	are	non-English.	We	will	write	a	function	that	uses	 detect 	to	identify	the	language	of	input	text	and	apply	this	function	to	each	of	the	5
columns	containing	tweets;	we	will	store	the	function	output	in	5	new	separate	columns.	We	will	then	filter	 df 	to	only	keep	rows	that	have	'en'	(English)
for	all	5	tweets.	We	then	drop	the	'lang'	columns,	as	they	are	no	longer	necessary	after	this	process	is	complete.

In	[18]:

#	function	to	identify	the	language	of	each	of	the	tweets	using	`detect`

def	lang_detect(text):
				try:
								result	=	detect(text)
				except	LangDetectException	as	e:
								result	=	str(e)
				return	result

In	[19]:

#	apply	lang_detect	function	to	each	of	the	5	tweet	columns

for	i	in	range(5):
				df['lang'	+	str(i+1)]	=	df.iloc[:,(i+6)].apply(lang_detect)	

In	[20]:

#	keep	only	the	rows	where	all	5	tweets	are	in	english	('en'	output	from	`detect`)

for	i	in	range(5):
				df	=	df[df['lang'	+	str(i+1)]	==	'en']

Out[17]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

0 160881623 infp 0.695000 11.785000 0.570000 3003.580000
@andresitonieve	Me

he	quedado	igual
estoy	llor...

1 28968838 infp 0.780000 16.150000 0.170000 3718.745000

PLEASE	VOTE,
VOTE,	VOTE	FOR
AMYBETH!	thanks!

i...

2 2325006565 infp 0.854271 9.668342 0.201005 3722.211055

みんなからの匿名質
問を募集中！\n\nこん
な質問に答えてるよ

\n●	Hello…\n	thi...

3 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

4 1330237585 infp 0.635000 7.655000 0.495000 827.370000
@DaryKiri_	Gracias	a

ti	por	apreciarlo	�
✌�

...

7829 489644768 estj 1.316583 16.804020 0.035176 71.497487
RT	@vonerhan:

There’s	more	to	the
story.	SoulC...

7830 3061139834 estj 1.301508 17.844221 0.010050 6.628141
I	don't	need	a	man,	I
just	need	my	mom	�

�

	...

7831 329077476 estj 0.899083 13.504587 0.073394 40.119266

RT
@MoTheComedian:
Isolation	Sessions:

Kavani’...

7832 781835161394614272 estj 0.162162 14.675676 0.351351 3.202703
Hoy	sera	la	entrega

de	premios	al
campeon	de	l...

7833 2840408812 estj 0.719298 16.596491 0.070175 1.859649
Meet	one	of

#Chicago's	rising
media	stars:	@Mi...

7832	rows	×	11	columns

In	[21]:

df.head()

In	[22]:

#	drop	the	'lang'	columns	

lang	=	[]
for	i	in	range(5):
				lang.append('lang'	+	str(i+1))
df	=	df.drop(columns	=	lang)

In	[23]:

#	reset	the	index	so	that	the	rows	are	in	numerical	order

df	=	df.reset_index(drop=True)
df.index	=	df.index	+	1
df.head()

STEP	4

Finally,	we	will	apply	 word_tokenize 	from	 nltk 	to	each	of	the	tweets	in	preparation	for	EDA.

In	[24]:

#	tokenize	the	tweets

for	i	in	range(5):
				df['token_'	+	str(i	+	1)]	=	df['tweet_'	+	str(i	+	1)].apply(word_tokenize)

Out[21]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

3 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

5 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

8 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

9 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

11 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

Out[23]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

In	[25]:

#	current	version	of	`df`

df

Data	Analysis	&	Results

EDA

STEP	1

We	first	conduct	EDA	to	get	a	sense	what	information	is	stored	in	the	dataframe	 df .	We	can	check	out	the	shape	and	the	variables	of	 df ,	as	well	as
the	type	of	these	variables.

In	[26]:

#	determine	shape	of	the	data

df.shape

Out[25]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000 RT	@Hypable:	#Supergirl
really	missed	the	mark...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

...

3482 3095624063 estj 1.530000 14.715000 0.055000 8.145000
@AssumeNormality

@VUHealthPol	O.M.G.
What	a	WO...

3483 790650559086854144 estj 0.572864 15.964824 0.170854 9375.703518 RT	@theofficenbc:	It	has
come	to	this.	https:/...

3484 52277872 estj 0.165000 15.440000 0.000000 0.335000
RT	@RupertCDouglas:

#MozillaLifeboat\n\nWe're

3485 489644768 estj 1.316583 16.804020 0.035176 71.497487
RT	@vonerhan:	There’s

more	to	the	story.
SoulC...

3486 329077476 estj 0.899083 13.504587 0.073394 40.119266
RT	@MoTheComedian:

Isolation	Sessions:
Kavani’...

3486	rows	×	16	columns

Out[26]:

(3486,	16)

In	[27]:

#	determine	variables	and	their	types

df.dtypes

mbti_personality 	is	our	classification	variable,	which	is	of	type	string.	Variables	 average_mentions_count ,	 average_tweet_length ,	
average_media_count ,	and	 average_retweet_count 	are	numerical.	All	 tweet_# 	variables	are	strings	and	all	 token_# 	variables	are	lists	of
strings.	We	can	calculate	some	descriptive	statistics	for	the	numerical	variables:

In	[28]:

#	determine	how	many	users	of	each	mbti	type	are	in	the	data

df['mbti_personality'].value_counts()

Out[27]:

id																										int64
mbti_personality											object
average_mentions_count				float64
average_tweet_length						float64
average_media_count							float64
average_retweet_count					float64
tweet_1																				object
tweet_2																				object
tweet_3																				object
tweet_4																				object
tweet_5																				object
token_1																				object
token_2																				object
token_3																				object
token_4																				object
token_5																				object
dtype:	object

Out[28]:

infj				488
intj				455
enfp				428
infp				388
enfj				323
intp				293
entj				245
entp				243
isfj				160
istj				125
estj					84
esfj					79
isfp					60
esfp					46
istp					43
estp					26
Name:	mbti_personality,	dtype:	int64

In	[29]:

df_value	=	pd.DataFrame(data	=	df['mbti_personality'].value_counts()).reset_index()
df_value	=	df_value.rename(columns	=	{'index':	'mbti',	'mbti_personality':	'count'})

sns.barplot(x	=	'mbti',	y	=	'count',	data	=	df_value);

We	can	see	the	number	of	users	per	MBTI	in	the	plot	above.	At	the	maximum,	there	are	488	tweets	classified	as	INFJ	that	will	be	used	for	analysis.	The
plot	shows	us	that	in	the	data	there	is	quite	a	discrepency	between	the	amount	of	users	of	each	MBTI	type	and	at	the	minimum	there	are	only	26	ESTP
users	in	the	cleaned	dataframe.	However,	we	are	using	5	tweets	per	user,	which	we	will	be	merging	into	a	single	string	later	on	to	be	used	for	analysis,	so
the	corpus	of	each	(and	subsequently,	the	corpus	of	each	user)	be	user	will	be	more	extensive.

STEP	2

We	will	now	investigate	if	there	exists	any	relationships	between	MBTI	types	and	the	numerical	variables	 average_mentions_count ,	
average_tweet_length ,	 average_media_count ,	and	 average_retweet_count .	To	achieve	this,	we	will	first	subset	the	dataframe	for	each
MBTI	and	average	their	 average_mentions_count 	column.	We	then	repeat	this	for	the	 average_tweet_length ,	 average_media_count ,
and	 average_retweet_count 	columns.	We	will	use	barplots	to	visualize	the	results.

In	[30]:

#	find	the	mean	mentions	count	for	each	individual	MBTI

mbti_list	=	{}
def	mean_mentions(str):
				mbti_mean	=	df[df['mbti_personality']==	str].average_mentions_count.mean()
				mbti_list[str]	=	mbti_mean
				return	mbti_list

unique_mbti	=	df['mbti_personality'].unique()

for	element	in	unique_mbti:
				mean_mentions(element)
				
#	plot	the	averages	into	a	barplot
length_df	=	pd.DataFrame(mbti_list.items(),	columns=['mbti',	'average_mentions_count'])
sns.barplot(x	=	'mbti',	y	=	'average_mentions_count',	data	=	length_df);

In	[31]:

#	find	the	mean	tweet	length	for	each	individual	MBTI

mbti_list	=	{}
def	mean_length(str):
				mbti_mean	=	df[df['mbti_personality']==	str].average_tweet_length.mean()
				mbti_list[str]	=	mbti_mean
				return	mbti_list

unique_mbti	=	df['mbti_personality'].unique()

for	element	in	unique_mbti:
				mean_length(element)
				
#	plot	the	averages	into	a	barplot
length_df	=	pd.DataFrame(mbti_list.items(),	columns=['mbti',	'average_tweet_length'])
sns.barplot(x	=	'mbti',	y	=	'average_tweet_length',	data	=	length_df);

In	[32]:

#	find	the	mean	media	count	for	each	individual	MBTI

mbti_list	=	{}
def	mean_media(str):
				mbti_mean	=	df[df['mbti_personality']==	str].average_media_count.mean()
				mbti_list[str]	=	mbti_mean
				return	mbti_list

unique_mbti	=	df['mbti_personality'].unique()

for	element	in	unique_mbti:
				mean_media(element)
				
#	plot	the	averages	into	a	barplot
length_df	=	pd.DataFrame(mbti_list.items(),	columns=['mbti',	'average_media_count'])
sns.barplot(x	=	'mbti',	y	=	'average_media_count',	data	=	length_df);

In	[33]:

#	find	the	mean	media	count	for	each	individual	MBTI

mbti_list	=	{}
def	mean_retweet(str):
				mbti_mean	=	df[df['mbti_personality']==	str].average_retweet_count.mean()
				mbti_list[str]	=	mbti_mean
				return	mbti_list

unique_mbti	=	df['mbti_personality'].unique()

for	element	in	unique_mbti:
				mean_retweet(element)
				
#	plot	the	averages	into	a	barplot
length_df	=	pd.DataFrame(mbti_list.items(),	columns=['mbti',	'average_retweet_count'])
sns.barplot(x	=	'mbti',	y	=	'average_retweet_count',	data	=	length_df);

Observing	the	results	of	these	four	barplots,	the	mean	tweet	length	per	MBTI	and	mean	mention	count	per	MBTI	do	not	explicitly	vary	enough	to	be	a
significant	asset	to	our	analysis.	However,	we	would	like	to	analyze	the	correlation	between	MBTI	and	mean	media	count	as	well	as	mean	retweet	count
having	found	possible	patterns	in	the	barplots	themselves	that	would	need	a	more	in	depth	study.	We	can	explore	the	outliers	for	the
average_media_count	and	average_retweet_count	variables	below.

In	[34]:

mbti_v_media	=	sns.boxplot(y='average_media_count',	x='mbti_personality',	data=df);
mbti_v_media.set(xlabel='mbti');

In	[35]:

mbti_v_retweet	=	sns.boxplot(y='average_retweet_count',	x='mbti_personality',	data=df);
mbti_v_retweet.set(xlabel='mbti');

From	these	boxplots,	we	notice	that	most,	if	not	all,	categories	contain	outlier	values	for	both	of	these	variables.	The	most	extreme	outlier	is	from	an	INFJ
user	with	an	average	retweet	count	of	almost	140000.	Since	we	plan	to	use	mainly	text	for	our	anaylsis,	we	will	keep	these	observations	in	the	data	since
the	text	content	of	a	user	is	not	affected	by	outliers	for	these	variables.	However,	if	we	end	up	using	these	two	variables	in	our	analysis,	we	may	end	up
having	to	remove	these	outlier	observations	from	the	data.

STEP	3

Now,	we	will	investigate	if	there	exists	any	relationships	between	MBTI	and	tweet	content.	Before	doing	so,	we	must	clean	the	text	data	by	first	removing
all	instances	of	'RT	@username',	'@username',	and	'https:link'	from	the	tokenized	version	of	the	text	(we	performed	text	tokenization	in	the	Data	Cleaning
porttion	above).	Having	the	text	tokenized	into	a	list	makes	this	cleaning	process	much	easier	since,	for	example,	'RT	@username'	is	separated	into	['RT',
'@',	'username'].	This	allows	us	to	simply	iterate	through	the	tokenized	text	list	and	whenever	we	encounter	'RT',	we	delete	it	and	the	2	strings	after	it.	We
use	a	similar	process	for	removing	'@username'	and	'https:link'	occurrences	in	the	text.	We	remove	these	parts	of	the	text	since	they	do	not	have	any
meaning	that	could	be	used	for	text	analysis.

In	[36]:

#	make	a	deep	copy	of	`df`	so	we	also	have	access	to	the	original	version	of	the	dataframe	

df1	=	df.copy(deep	=	True)

In	[37]:

#	function	to	delete	RT	(retweets)	and	the	username

def	remove(lst):
				#	delete	RT
				if	lst[0]	==	'RT':
								for	i	in	range(4):
												del	lst[0]
				
				return	lst

In	[38]:

#	apply	remove	function	to	token	columns

for	i	in	range(5):
				df1['token_'	+	str(i+1)]	=	df1['token_'	+	str(i+1)].apply(remove)

In	[39]:

df1.head()

In	[40]:

#	function	to	delete	'@'	and	username	that	follows	for	non-RT	'@'s

def	remove_at(lst):
				#	delete	'@',	username
				i	=	0
				while	i	<	len(lst):
								if	lst[i]	==	'@':
												for	j	in	range(2):
																del	lst[i]
								else:
												i	+=	1
				
				return	lst

In	[41]:

#	apply	remove_at	function	to	token	columns

for	i	in	range(5):
				df1['token_'	+	str(i+1)]	=	df1['token_'	+	str(i+1)].apply(remove_at)

Out[39]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

In	[42]:

df1.head()

In	[43]:

#	function	to	delete	'https'	and	the	link	that	follows

def	remove_link(lst):
				#	delete	'https',	':',	link
				i	=	0
				while	i	<	len(lst):
								if	lst[i]	==	'https':
												for	j	in	range(3):
																del	lst[i]
								else:
												i	+=	1
				
				return	lst

In	[44]:

#	apply	remove_link	function	to	token	columns

for	i	in	range(5):
				df1['token_'	+	str(i+1)]	=	df1['token_'	+	str(i+1)].apply(remove_link)

Out[42]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

In	[45]:

df.head()

STEP	4

Now	that	our	text	has	been	cleaned,	we	can	perform	sentiment	analysis	using	 vader 	to	investigate	any	relationships	between	text	sentiment	and	MBTI.
Note	that	we	have	kept	in	the	emojis,	word	case,	and	punctuation	for	now	since	 vader 	takes	these	into	consideration	when	calculating	sentiment
metrics.	Before	we	begin	sentiment	analysis,	we	concatenate	the	tokenized	lists	to	form	clean	version	of	the	tweets	as	strings.

In	[46]:

#	new	dataframe	to	store	clean	tweets	only

df_clean	=	pd.DataFrame(df1[['id',	'mbti_personality']])

In	[47]:

#	function	to	concatenate	tokenized	list	into	cleaned	version	of	the	tweet

def	concat_token(lst):
				#	join	words	in	a	list
				string	=	'	'.join(lst)
				
				return	string

Out[45]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

In	[48]:

#	apply	concat_token	function	to	token	columns

for	i	in	range(5):
				df_clean['clean_tweet_'	+	str(i+1)]	=	df1['token_'	+	str(i+1)].apply(concat_token)

df_clean.head()

In	[49]:

#	put	all	tweets	from	a	user	in	a	single	list

clean_list	=	[]
for	i	in	range(5):
				clean_list.append('clean_tweet_'	+	str(i+1))

df_clean['combined_tweets']	=	df_clean[clean_list].values.tolist()

df_clean.head()

In	[50]:

#	imports	for	semtiment	analysis

from	nltk.sentiment.vader	import	SentimentIntensityAnalyzer	
analyser	=	SentimentIntensityAnalyzer()

Out[48]:

id mbti_personality clean_tweet_1 clean_tweet_2 clean_tweet_3 clean_tweet_4 clean_tweet_5

1 907848145 infp �	♀		#
EXOLSelcaDay

when	is	this	from	?	?	?
���

since	we	're	talking
about	suhø	,	a

friendly	r...

I	am	supporting	this
fundraising	page	and	I

th...
Sun	and	moon	outfits

2 97687049 infp
The	media	are	just

feeding	fear	over	this
coro...

How	my	mother	feels
about	these	cheap

flights��

I	know	now	,	as	an
adult	,	it	’	s	my

responsib...

In	the	right	now	,	I
know	that	you	need

people...

I	grew	up	and	still
have	moments	of

telling	pe...

3 63170384 infp
#	Supergirl	really

missed	the	mark	with
Kara	a...

Wild	how	most	of	the
media	response	to	the

kar...

Let	it	be	known	that
these	are	the	half

hours	...

The	ultimate	ghost
Pokemon	got	ghosted

.	No	on...

Dear	ableds	:	Panic
buying	is	not	going	to

pro...

4 33811202 infp
Comic	View	on	BET	,

comin	'	at	you	six
nights...

Kids	are	observant	and
intelligent	when	they

w...

If	you	are	reading	this
,	you	have	made	it

thr...

Ministry	of	Darkness
but	the	Supremacy	of

Whit...

5 236506960 infp #	ResignTrump
This	was	from	data	is
beautiful	on	Reddit	.	I

...

YOU	HAVE	TO
READ	THIS	!	!	!	#

Biden2020

Take	my	vitamins	&
amp	;	every	natural

immune	...

Out[49]:

id mbti_personality clean_tweet_1 clean_tweet_2 clean_tweet_3 clean_tweet_4 clean_tweet_5 combined_tweets

1 907848145 infp �	♀		#
EXOLSelcaDay

when	is	this	from	?
?	?	���

since	we	're
talking	about

suhø	,	a	friendly
r...

I	am	supporting
this	fundraising
page	and	I	th...

Sun	and	moon
outfits

[�	♀		#
EXOLSelcaDay,

when	is	this	from	?
?	?	...

2 97687049 infp
The	media	are

just	feeding	fear
over	this	coro...

How	my	mother
feels	about	these
cheap	flights��

I	know	now	,	as
an	adult	,	it	’	s

my	responsib...

In	the	right	now	,	I
know	that	you
need	people...

I	grew	up	and	still
have	moments	of

telling	pe...

[The	media	are
just	feeding	fear
over	this	cor...

3 63170384 infp
#	Supergirl	really
missed	the	mark

with	Kara	a...

Wild	how	most	of
the	media

response	to	the
kar...

Let	it	be	known
that	these	are

the	half	hours	...

The	ultimate
ghost	Pokemon
got	ghosted	.	No

on...

Dear	ableds	:
Panic	buying	is

not	going	to	pro...

[#	Supergirl	really
missed	the	mark

with	Kara	...

4 33811202 infp
Comic	View	on
BET	,	comin	'	at
you	six	nights...

Kids	are	observant
and	intelligent
when	they	w...

If	you	are	reading
this	,	you	have
made	it	thr...

Ministry	of
Darkness	but	the

Supremacy	of
Whit...

[Comic	View	on
BET	,	comin	'	at
you	six	night...

5 236506960 infp #	ResignTrump
This	was	from

data	is	beautiful
on	Reddit	.	I	...

YOU	HAVE	TO
READ	THIS	!	!	!

#	Biden2020

Take	my	vitamins
&	amp	;	every

natural	immune	...

[#	ResignTrump,
This	was	from

data	is	beautifu...

In	[51]:

#	function	calculate	average	`negative`	metric	(from	vader)	of	each	user

def	neg_sentiments(lst):
				negative_total	=	0
				for	i	in	range(len(lst)):
								ss	=	analyser.polarity_scores(lst[i])
								negative_total	+=	ss['neg']
				
				average	=	negative_total	/	len(lst)
				return	average

In	[52]:

#	function	calculate	average	`neutral`	metric	(from	vader)	of	each	user

def	neu_sentiments(lst):
				neutral_total	=	0
				for	i	in	range(len(lst)):
								ss	=	analyser.polarity_scores(lst[i])
								neutral_total	+=	ss['neu']
				
				average	=	neutral_total	/	len(lst)
				return	average

In	[53]:

#	function	calculate	average	`positive`	metric	(from	vader)	of	each	user

def	pos_sentiments(lst):
				positive_total	=	0
				for	i	in	range(len(lst)):
								ss	=	analyser.polarity_scores(lst[i])
								positive_total	+=	ss['pos']
				
				average	=	positive_total	/	len(lst)
				return	average

In	[54]:

#	apply	sentiments	functions	to	clean	tweet	columns

df_clean['neg']	=	df_clean['combined_tweets'].apply(neg_sentiments)
df_clean['neu']	=	df_clean['combined_tweets'].apply(neu_sentiments)
df_clean['pos']	=	df_clean['combined_tweets'].apply(pos_sentiments)

In	[55]:

df_clean

Out[55]:

id mbti_personality clean_tweet_1 clean_tweet_2 clean_tweet_3 clean_tweet_4 clean_tweet_5 combined_tweets neg neu

1 907848145 infp �	♀		#
EXOLSelcaDay

when	is	this
from	?	?	?	�

��

since	we	're
talking	about

suhø	,	a
friendly	r...

I	am
supporting	this

fundraising
page	and	I	th...

Sun	and	moon
outfits

[�	♀		#
EXOLSelcaDay,

when	is	this	from	?
?	?	...

0.0000 0.8646 0.1354

2 97687049 infp

The	media	are
just	feeding

fear	over	this
coro...

How	my
mother	feels
about	these
cheap	flights

��

I	know	now	,
as	an	adult	,	it	’

s	my
responsib...

In	the	right
now	,	I	know
that	you	need

people...

I	grew	up	and
still	have

moments	of
telling	pe...

[The	media	are
just	feeding	fear
over	this	cor...

0.1142 0.8698 0.0160

3 63170384 infp

#	Supergirl
really	missed
the	mark	with

Kara	a...

Wild	how	most
of	the	media
response	to

the	kar...

Let	it	be	known
that	these	are
the	half	hours

...

The	ultimate
ghost

Pokemon	got
ghosted	.	No

on...

Dear	ableds	:
Panic	buying	is

not	going	to
pro...

[#	Supergirl	really
missed	the	mark

with	Kara	...
0.2006 0.7442 0.0548

4 33811202 infp

Comic	View	on
BET	,	comin	'

at	you	six
nights...

Kids	are
observant	and

intelligent
when	they	w...

If	you	are
reading	this	,

you	have
made	it	thr...

Ministry	of
Darkness	but

the	Supremacy
of	Whit...

[Comic	View	on
BET	,	comin	'	at
you	six	night...

0.0340 0.5728 0.1932

5 236506960 infp #	ResignTrump

This	was	from
data	is

beautiful	on
Reddit	.	I	...

YOU	HAVE
TO	READ
THIS	!	!	!	#
Biden2020

Take	my
vitamins	&

amp	;	every
natural

immune	...

[#	ResignTrump,
This	was	from

data	is	beautifu...
0.0094 0.6368 0.1538

...

3482 3095624063 estj

O.M.G	.	What	a
WONDERFUL
match	for	both

of	you...

What	do	you
think	?	Help
the	United

Way	identi...

Thank	you	,	!
Using	it	for	my
annual	health

po...

Campaign
promise	to

practice	:	What
Medicare	F...

Our		book
plays	a	song	in

which
MommyShark

pu...

[O.M.G	.	What	a
WONDERFUL

match	for	both	of
yo...

0.0206 0.7402 0.2390

3483 790650559086854144 estj It	has	come	to
this	.

I	put	the	wrong
email	in	when	I
made	my	most

r...

Baby	’	s	First
Apocalypse	☄

Love	that	I
have	a

headache	and
am	trying	to

n...

Help	a	girl	out
and	buy	my

soaps	
handmade	wi...

[It	has	come	to	this
.,	I	put	the	wrong

email	...
0.0228 0.8466 0.1306

3484 52277872 estj

#
MozillaLifeboat
We	're	hiring

across	a
bunch...

Check	out	how
the	Support
Engineering
Team	at	...

GitLab	is	hiring
a	Technical

Account
Manager	(...

GitLab	is	hiring
a	Technical

Account
Manager	#...

GitLab	is	hiring
a	Manager	,
Technical
Account...

[#	MozillaLifeboat
We	're	hiring

across	a	bunc...
0.0236 0.9308 0.0456

3485 489644768 estj

There	’	s	more
to	the	story	.
SoulCycle
stoppe...

Also	��	-	in
college	,	I	used

to	bake	my
feeli...

Last	night
something
incredible

happened	.	I
s...

All	on	the
heels	of
Opening

Ceremony
being	acq...

This	almost
feels	more

personal	than
posting	y...

[There	’	s	more	to
the	story	.

SoulCycle	stopp...
0.0162 0.9000 0.0840

3486 329077476 estj

Isolation
Sessions	:

Kavani	’	s	Mum
Vs	The	Geezer

PL	season
stats	from

Most	shots	off
target	-	D...

A	huge	well
done	to	the
boys	who

represented	...

Cracking
opportunity	to
join	Please	do

spread	...

Half	Term	Play
Scheme	|	17th
-	21st	February

|...

[Isolation	Sessions
:	Kavani	’	s	Mum

Vs	The	Ge...
0.0620 0.7422 0.1958

3486	rows	×	11	columns

In	[56]:

#	group	by	to	see	the	average	sentiment	scores	across	different	types

df_sentiment	=	df_clean.groupby('mbti_personality').mean().reset_index()
df_sentiment

In	[57]:

#	plot	for	negative	sentiment	metric

df_neg	=	df_sentiment.sort_values(by	=	'neg')
mbti_neg	=	sns.barplot(data	=	df_neg,	y	=	'mbti_personality',	x	=	'neg',	color	=	'steelblue');
mbti_neg.set(ylabel='mbti');

Out[56]:

mbti_personality id neg neu pos

0 enfj 4.786113e+16 0.061599 0.782835 0.144424

1 enfp 4.752411e+16 0.066785 0.770707 0.147554

2 entj 4.080205e+16 0.061161 0.781601 0.146629

3 entp 6.916391e+16 0.060206 0.795868 0.131584

4 esfj 4.486620e+16 0.052076 0.786091 0.144119

5 esfp 9.844515e+16 0.069887 0.776400 0.153709

6 estj 4.997585e+16 0.056148 0.777098 0.164369

7 estp 3.028379e+16 0.086569 0.746915 0.112700

8 infj 9.358035e+16 0.061832 0.765891 0.156701

9 infp 1.191384e+17 0.053536 0.768383 0.158494

10 intj 7.715782e+16 0.060550 0.788965 0.137297

11 intp 8.488068e+16 0.067539 0.787897 0.130221

12 isfj 2.218184e+16 0.060950 0.790356 0.134935

13 isfp 7.761537e+16 0.057400 0.782713 0.149877

14 istj 6.119650e+16 0.059198 0.790941 0.137056

15 istp 3.985784e+16 0.071144 0.799753 0.124465

In	[58]:

#	plot	for	positive	sentiment	metric

df_pos	=	df_sentiment.sort_values(by	=	'pos')
mbti_pos	=	sns.barplot(data	=	df_pos,	y	=	'mbti_personality',	x	=	'pos',	color	=	'steelblue');
mbti_pos.set(ylabel='mbti');

From	the	first	plot,	we	can	see	that	the	tweets	of	users	who	classify	as	ESTP	have	a	significantly	higher	negative	sentiment	metric	than	tweets	from	users
of	other	MBTIs.	In	this	plot	we	can	also	see	that	tweets	from	ESFJ	and	INFP	have	the	lowest	negative	sentiment	metric.	From	the	second	plot,	we	see	that
tweets	of	users	who	classify	as	ESTJ	and	INFP	have	the	highest	positive	sentiment	metric,	but	the	difference	is	not	as	stark	as	in	the	first	plot.	We	can
also	note	that	ESTP	user	tweets	have	the	lowest	positive	sentiment	metric	in	the	second	plot.	From	these	results,	particularly	the	ESTP	metrics,	we
believe	there	may	be	a	relationship	between	MBTI	type	and	text	content	of	their	tweets	that	we	can	further	explore.

STEP	5

Next,	we	will	continue	cleaning	the	text	data	in	order	to	remove	emojis	and	apply	stop	words.	This	is	necessary	to	analyze	the	word	frequency	distribution
of	each	MBTI	type.	The	function	to	clean	emojis	is	 clean 	from	the	the	 clean-text 	package,	which	also	handles	deletion	of	punctuation	and
changing	all	words	to	lower	case.	For	stop	words,	we	import	 stopwords 	from	 nltk.corpus .

In	[59]:

#	function	to	delete	emojis	
#	utilizes	`clean`	function	from	clean-text	package

def	remove_emoj(lst):
				#	delete	emojis	and	punctuation,	but	keep	the	original	case	of	the	words
				for	i	in	range(len(lst)):
								lst[i]	=	clean(lst[i],	no_emoji	=	True,	no_punct	=	True)
				
				return	lst

In	[60]:

#	apply	remove_emoj	function	to	token	columns

for	i	in	range(5):
				df1['token_'	+	str(i+1)]	=	df1['token_'	+	str(i+1)].apply(remove_emoj)

df1.head()

In	[61]:

#	function	to	delete	''	(empty	space)	that	the	`clean`	function	puts	in	place	of	
#	removed	emojis

def	remove_space(lst):
				#	delete	empty	spaces
				i	=	0
				while	i	<	len(lst):
								if	lst[i]	==	'':
												del	lst[i]
								else:
												i	+=	1
				
				return	lst

Out[60]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

In	[62]:

#	apply	remove_space	function	to	token	columns

for	i	in	range(5):
				df1['token_'	+	str(i+1)]	=	df1['token_'	+	str(i+1)].apply(remove_space)
				
df1.head()

In	[63]:

#	import	stop	words

from	nltk.corpus	import	stopwords
stop_words	=	set(stopwords.words('english'))

#	look	at	stop	words

print(stop_words)

In	[64]:

#	function	to	delete	stopwords

def	remove_stop(lst):
				#	remove	words	from	the	list	that	are	in	stopwords
				new_lst	=	[]
				for	i	in	range(len(lst)):
								if	lst[i]	not	in	stop_words:
												new_lst.append(lst[i])
				
				return	new_lst

Out[62]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

{"she's",	'your',	'between',	'other',	"shan't",	'an',	'having',	"hadn't",	'my',	'were',	"haven't",	"
wouldn't",	'again',	'she',	'all',	'doing',	'but',	'more',	'its',	'what',	'they',	'didn',	'doesn',	'b
y',	"weren't",	'why',	'further',	'himself',	'both',	'while',	'for',	"you'd",	'the',	'in',	'if',	'be'
,	'have',	'this',	'theirs',	'below',	'needn',	"don't",	't',	'll',	'ma',	'our',	'because',	'own',	'of
f',	'than',	'ours',	'from',	'down',	'through',	'had',	'them',	'themselves',	'myself',	'i',	'is',	'is
n',	'mustn',	'it',	'his',	"should've",	"couldn't",	'hers',	'to',	'hasn',	'not',	'o',	'am',	'just',	'
too',	'y',	'do',	'yourself',	'been',	'or',	'during',	'aren',	"needn't",	'over',	'was',	'haven',	'now
',	'who',	'with',	'of',	'should',	"aren't",	'are',	'hadn',	'being',	'herself',	'and',	"hasn't",	"tha
t'll",	'a',	'me',	'itself',	'how',	"you're",	'don',	'couldn',	'yourselves',	'shan',	'weren',	've',	'
those',	"mightn't",	'which',	'that',	'above',	'wouldn',	"mustn't",	'under',	'then',	'after',	'so',	'
you',	'on',	"it's",	'their',	'whom',	'before',	'same',	'few',	're',	"didn't",	'once',	'until',	"isn'
t",	'him',	'here',	'nor',	'her',	"won't",	'into',	"doesn't",	"you've",	"wasn't",	'some',	"you'll",	'
no',	'when',	'mightn',	'wasn',	'we',	'up',	'most',	'ain',	'shouldn',	'he',	'such',	'd',	'only',	's',	
'each',	'can',	'did',	'won',	'against',	'out',	'any',	'these',	'very',	'm',	"shouldn't",	'about',	'o
urselves',	'does',	'as',	'at',	'there',	'will',	'yours',	'where',	'has'}

In	[65]:

#	apply	remove_stop	function	to	token	columns

for	i	in	range(5):
				df1['token_'	+	str(i+1)	+	'_stop']	=	df1['token_'	+	str(i+1)].apply(remove_stop)

df1.head()

STEP	6

Finally,	we	compute	and	plot	the	frequency	distribution	of	words	in	our	text	data	for	each	MBTI.	We	want	to	investigate	if	there	exists	any	possible	trends	in
the	20	most	common	words	used	by	each	MBTI	type	and	if	there	are	any	unique	words	that	only	one	(or	very	few)	of	the	types	use	frequently.

In	[66]:

from	nltk.probability	import	FreqDist
import	string

In	[67]:

#	combine	all	tokens	for	each	user

df1['merged_tokens']	=	df1['token_1_stop']
for	i	in	range(4):
				df1['merged_tokens']	+=	df1['token_'	+	str(i+2)	+	'_stop']

In	[68]:

mbti_lst	=	df1['mbti_personality'].unique()

for	i	in	range(len(mbti_lst)):
				df_sub	=	df1[df['mbti_personality']	==	mbti_lst[i]]
				word_count	=	df_sub['merged_tokens'].apply(pd.Series).stack()
				
				#	calculation	word	frequency
				fdist_sub	=	FreqDist(word_count)

				#	remove	punctuation	counts
				for	punc	in	string.punctuation:
								del	fdist_sub[punc]
								
				fdist_sub.plot(20,	cumulative=False,	title	=	mbti_lst[i]);

Out[65]:

id mbti_personality average_mentions_count average_tweet_length average_media_count average_retweet_count tweet_1

1 907848145 infp 0.906250 14.718750 0.401042 10028.718750
RT	@yep4andy:

�	♀	\n#EXOLSelcaDay
\n@weareoneE...

RT	@lqldks:	when
is	this	from???	�

��	https://t...

2 97687049 infp 0.959391 16.380711 0.167513 6716.137056
RT	@KingKamale:	The
media	are	just	feeding

fea...

@cinderCHERELla:
How	my	mother
feels	about	...

3 63170384 infp 0.690000 11.770000 0.220000 3722.910000
RT	@Hypable:

#Supergirl	really	missed
the	mark...

RT	@karazrell:
Wild	how	most	of
the	media	resp...

4 33811202 infp 0.454082 12.760204 0.117347 2374.331633
RT	@CreoleBabyBritt:
Comic	View	on	BET,

comin...

@EmpressMoe_
Kids	are	observant

and	intelligen...

5 236506960 infp 1.655000 15.470000 0.125000 1087.200000
RT	@A4Ny14:
#ResignTrump

https://t.co/8HyMJXzPAb

@GoddessOfFireB:
This	was	from	data

5	rows	×	21	columns

From	the	frequency	distributions	graphs	above,	we	notice	that	the	3	MBTI	types	with	the	highest	positive	sentiment	metric	(ESTJ,	INFP,	and	INFJ)	all	have
the	words	'like',	'love',	'good'	in	their	top	20	most	frequent	words.	ESTP,	which	had	the	highest	negative	sentiment	metric,	was	the	only	type	with	the	word
'cancelled'	in	their	most	frequent	words.	In	addition,	we	noticed	that	all	the	other	MBTI	personality	types	had	"one"	and	"like"	in	their	top	5	most	used	words
except	for	ISTP	and	ESTP	personality	types.	Then	ESTJ	just	had	"one"	as	their	most	used	word	but	"like"	in	their	least	used.	Overall,	most	of	the	types
shared	similar	most	frequent	words,	which	is	expected	due	to	the	nature	of	the	English	language.	However,	the	plots	show	us	that	each	type	has	certain
unique	words	that	may	not	found	in	other	types'	plots.	For	example,	ISTP	is	the	only	type	with	'automatically'	as	one	of	their	most	frequent	words,	and
ranked	6th	as	well;	ISTP	also	has	'unfollowed'	in	their	rankings,	which	is	not	in	any	other	plot.	In	addition,	ISTJ	is	the	only	type	to	have	'twitter'	in	their
rankings,	and	ESTJ	is	the	only	type	to	have	'support'	in	their	rankings.	Thus,	from	these	plots	we	can	confirm	that	certain	unique	words	are	used	by	only
some	of	the	types,	which	is	useful	if	attempting	to	build	a	model	to	predict	MBTI	based	on	text	content.

Analysis

Now	that	we	have	explored	the	data,	we	will	creating	a	model	that	takes	in	an	individual's	tweets	and	predicts	their	MBTI.	We	will	be	using	a	linear	Support
Vector	Machine	(SVM)	to	train	and	predict	our	model,	as	we	did	in	several	Natural	Language	Processing	(NLP)	demonstrations	from	this	course.	SVM	is	a
widely	used	machine	learning	algorithm	that	is	used	for	both	classification	and	regression	models.	In	our	case,	we	will	be	using	SVM	to	perform	sentiment
analysis	on	text	(tweet	content)	and	predicting	a	label/group	(MBTI).	For	the	vectorizer,	we	will	be	using	the	Term	Frequency	-	Inverse	Document
Frequency	(TF-IDF)	approach	instead	of	the	Bag	of	Words	(BoW)	approach	since	we	want	to	factor	in	the	uniqueness	of	the	words	used,	as	opposed	to
having	each	word	weighted	the	same	in	our	analysis.	In	the	following	section,	we	will	also	create	several	other	different	prediction	models	using	SVM	to
see	which	performs	the	best.

I.	Prediction	model	using	tweets

STEP	1

We	create	a	TF-IDF	vectorizer	to	transform	the	tweets	into	numerical	matricies	that	will	be	used	by	SVM.	We	set	the	max	featrues	to	2000,	which	indicates
that	2000	unique	English	words	will	be	considered	in	the	model.	We	also	create	the	training	and	testing	sets	using	an	80/20	split.

We	note	that	all	five	tweets	for	each	user	are	first	combined	into	a	single	string	before	applying	the	vectorizer.	The	merging	of	tweets	simplifies	the
operation	while	still	maintaining	the	same	amount	of	content	per	user.	Again,	as	stated	above,	X	is	the	vectorized	tweet	data	and	Y	is	the	MBTI
classification.

In	[69]:

#	subset	df1	to	include	only	the	`mbti`	column	and	the	clean_tweet_#	columns

df_predict	=	df1[['id',	'mbti_personality',	'merged_tokens']]

In	[70]:

#	combine	all	the	text	in	`merged_tokens`

df_predict['merged_tweets']	=	df_predict['merged_tokens'].apply(concat_token)

In	[71]:

#	drop	`merged_tokens`	column	for	easier	viewing

df_predict	=	df_predict.drop(columns	=	['merged_tokens'])
df_predict

In	[72]:

#	scikit-learn	imports

from	sklearn.model_selection	import	train_test_split
from	sklearn.svm	import	SVC
from	sklearn.feature_extraction.text	import	CountVectorizer,	TfidfVectorizer
from	sklearn.metrics	import	classification_report,	precision_recall_fscore_support,	confusion_matrix,	ConfusionMa
trixDisplay
from	sklearn.metrics	import	accuracy_score
from	sklearn.preprocessing	import	MinMaxScaler

In	[73]:

#	make	tfidf	vectorizer

tfidf	=	TfidfVectorizer(sublinear_tf	=	True,	analyzer	=	'word',	
																							max_features	=	2000,	tokenizer	=	word_tokenize)

In	[74]:

#	vectorize	tweets	and	get	outcome	variable	as	np.array

tweet_X	=	tfidf.fit_transform(df_predict['merged_tweets']).toarray()
tweet_Y	=	df_predict['mbti_personality'].to_numpy()

In	[75]:

#	train	and	test	sets

tweet_train_X,	tweet_test_X,	tweet_train_Y,	tweet_test_Y	=	train_test_split(tweet_X,	tweet_Y,	test_size	=	0.2,	ra
ndom_state	=	100)

STEP	2

We	initialize	and	train	the	SVM	classifier.	We	then	run	the	prediction	model	on	both	the	training	set	and	the	test	set	using	the	 predict 	function	of	on	the
classifier.

In	[76]:

#	function	that	initializes	SVM	classifier	and	trains	it

def	train_SVM(X,	y,	kernel='linear'):
				
				clf	=	SVC(kernel	=	kernel)
				clf.fit(X,	y)
				return	clf

Out[71]:

id mbti_personality merged_tweets

1 907848145 infp exolselcaday	since	talking	suh	friendly	remind...

2 97687049 infp media	feeding	fear	coronavirus	tell	us	amount	...

3 63170384 infp supergirl	really	missed	mark	kara	lena	episode...

4 33811202 infp comic	view	bet	comin	six	nights	week	getcha	la...

5 236506960 infp resigntrump	data	beautiful	reddit	sure	accurat...

...

3482 3095624063 estj omg	wonderful	match	congrats	kev	terrific	news...

3483 790650559086854144 estj come	put	wrong	email	made	recent	order	track	o...

3484 52277872 estj mozillalifeboat	hiring	across	bunch	department...

3485 489644768 estj story	soulcycle	stopped	innovating	amp	focused...

3486 329077476 estj isolation	sessions	kavani	mum	vs	geezer	pl	sea...

3486	rows	×	3	columns

In	[77]:

#	train	SVM

tweet_clf	=	train_SVM(tweet_train_X,	tweet_train_Y)

In	[78]:

#	use	model	to	predict

tweet_predicted_train_Y	=	tweet_clf.predict(tweet_train_X)
tweet_predicted_test_Y	=	tweet_clf.predict(tweet_test_X)

In	[79]:

#	training-set	result

print(classification_report(tweet_train_Y,	tweet_predicted_train_Y))

														precision				recall		f1-score			support

								enfj							0.74						0.78						0.76							262
								enfp							0.63						0.87						0.73							334
								entj							0.88						0.67						0.76							208
								entp							0.98						0.48						0.64							181
								esfj							1.00						0.19						0.32								63
								esfp							1.00						0.08						0.14								39
								estj							1.00						0.44						0.61								70
								estp							1.00						0.05						0.10								20
								infj							0.55						0.96						0.70							403
								infp							0.73						0.79						0.76							308
								intj							0.68						0.89						0.77							367
								intp							0.93						0.65						0.77							233
								isfj							1.00						0.37						0.54							123
								isfp							1.00						0.08						0.15								51
								istj							1.00						0.28						0.44								89
								istp							1.00						0.05						0.10								37

				accuracy																											0.70						2788
			macro	avg							0.88						0.48						0.52						2788
weighted	avg							0.78						0.70						0.67						2788

In	[80]:

mbtis	=	df_predict.mbti_personality.unique().tolist()

conf_mat_train	=	confusion_matrix(tweet_train_Y,	tweet_predicted_train_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	mbtis).plot();
fig	=	disp.figure_
fig.set_figwidth(20)
fig.set_figheight(10)	

In	[81]:

#	test-set	result

print(classification_report(tweet_test_Y,	tweet_predicted_test_Y))

														precision				recall		f1-score			support

								enfj							0.17						0.16						0.17								61
								enfp							0.24						0.34						0.28								94
								entj							0.20						0.11						0.14								37
								entp							0.30						0.05						0.08								62
								esfj							0.00						0.00						0.00								16
								esfp							0.00						0.00						0.00									7
								estj							0.00						0.00						0.00								14
								estp							0.00						0.00						0.00									6
								infj							0.16						0.44						0.23								85
								infp							0.19						0.20						0.20								80
								intj							0.20						0.33						0.25								88
								intp							0.28						0.08						0.13								60
								isfj							0.00						0.00						0.00								37
								isfp							0.00						0.00						0.00									9
								istj							0.00						0.00						0.00								36
								istp							0.00						0.00						0.00									6

				accuracy																											0.19							698
			macro	avg							0.11						0.11						0.09							698
weighted	avg							0.18						0.19						0.16							698

In	[82]:

conf_mat_test	=	confusion_matrix(tweet_test_Y,	tweet_predicted_test_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_test,	display_labels	=	mbtis).plot();
fig	=	disp.figure_
fig.set_figwidth(20)
fig.set_figheight(10)

For	the	prediction	on	the	training	set,	we	achieved	an	accuracy	of	70%.	For	the	prediction	on	the	test	set,	we	achieved	an	accuracy	of	19%.	Both
percentages	are	not	very	high.	We	believe	that	the	model	does	not	perform	well	because	several	types	in	the	dataset	do	not	have	very	many	observations
when	compared	to	other	types.	We	see	from	the	 support 	column	of	both	classification	reports	that	certain	types	are	very	underrepresented	in	both	sets,
which	is	a	direct	result	of	the	discrepency	in	the	distribution	of	the	MBTI	types	in	our	cleaned	data	set.	From	the	test	set's	classification	report,	we	see	that
the	model	did	not	classify	any	observations	into	the	categories	whose	support	is	less	than	50	observations.

We	can	see	visually	that	our	model	performs	poorly	by	looking	along	the	diagonal	of	the	test	set	confusion	matrix.	Ideally,	we	want	to	have	the	diagonal	be
mostly	yellow,	which	indicates	that	the	model	correctly	predicts	the	types	(true	positives);	we	also	wnat	the	areas	not	along	the	diagonal	to	all	be	purple,
which	indicates	that	the	model	does	not	incorrectly	categorize	types.

However,	while	the	training	set	confusion	matrix	appears	to	be	somewhat	following	this	ideal	trend,	this	is	not	the	case	with	the	test	set	confusion	matrix.
From	the	second	plot,	when	we	look	at	the	vertical	columns	of	the	test	set	confusion	matrix	we	can	see	that	the	model	tends	to	classify	tweets	as	one	of
the	5	types	with	the	most	observations	in	the	dataset	(INFP,	ENFP,	INFJ,	ENFJ,	ISFJ).	The	model	barely	classifies	any	tweets	as	one	of	the	types	with
very	little	observations	in	the	dataset,	which	is	to	be	expected	since	the	corpus	for	the	model	to	learn	from	is	smaller	for	these	types.	This	results	in	low
prediction	accuracy,	as	we	see	in	the	classification	report.

II.	Prediction	model	using	tweets	&	numerical	features

STEP	1

We	now	want	to	see	if	we	can	improve	our	model	by	adding	the	numerical	features	of	 average_media_count 	and	 average_retweet_count 	as
part	of	the	X	variable	along	with	the	tweets.	We	normalize	the	two	numerical	variables	using	a	 MinMaxScalar() 	so	that	these	features	are	scaled
appropriately	when	they	are	added	to	the	vectorized	tweets	matrix.	We	then	apply	the	 tfidf 	vectorizer	as	we	did	above,	which	creates	matrix
representation	of	the	tweets,	and	the	 hpstack 	this	 np.array 	with	the	 np.array 	containing	the	scaled	numerical	features.

In	[83]:

#	subset	df1	to	include	only	the	`mbti`	column,	the	`merged_tokens`	column,	and	the	columns	containing	the	numeri
cal	features	we	are	interested	in

df_number	=	df1[['id',	'mbti_personality',	'average_media_count',	'average_retweet_count',	'merged_tokens']]
df_number['merged_tweets']	=	df_number['merged_tokens'].apply(concat_token)
df_number	=	df_number.drop(columns	=	['merged_tokens'])

df_number.head()

In	[84]:

#	vectorize	tweets	(same	as	before)	and	get	outcome	variable	as	np.array

X	=	tfidf.fit_transform(df_number['merged_tweets']).toarray()
X

In	[85]:

#	get	the	numerical	features	as	np.array

numerical	=	df_number[['average_media_count',	'average_retweet_count']].to_numpy()
numerical

In	[86]:

#	normalize	the	numerical	variables

mms	=	MinMaxScaler()
numbers	=	mms.fit_transform(numerical)

Out[83]:

id mbti_personality average_media_count average_retweet_count merged_tweets

1 907848145 infp 0.401042 10028.718750 exolselcaday	since	talking	suh	friendly	remind...

2 97687049 infp 0.167513 6716.137056 media	feeding	fear	coronavirus	tell	us	amount	...

3 63170384 infp 0.220000 3722.910000 supergirl	really	missed	mark	kara	lena	episode...

4 33811202 infp 0.117347 2374.331633 comic	view	bet	comin	six	nights	week	getcha	la...

5 236506960 infp 0.125000 1087.200000 resigntrump	data	beautiful	reddit	sure	accurat...

Out[84]:

array([[0.								,	0.								,	0.								,	...,	0.								,	0.								,
								0.],
							[0.								,	0.								,	0.								,	...,	0.								,	0.								,
								0.],
							[0.								,	0.								,	0.								,	...,	0.								,	0.								,
								0.],
							...,
							[0.								,	0.								,	0.								,	...,	0.								,	0.								,
								0.],
							[0.23214821,	0.								,	0.								,	...,	0.								,	0.								,
								0.],
							[0.								,	0.								,	0.								,	...,	0.								,	0.3558092	,
								0.]])

Out[85]:

array([[4.01041667e-01,	1.00287188e+04],
							[1.67512690e-01,	6.71613706e+03],
							[2.20000000e-01,	3.72291000e+03],
							...,
							[0.00000000e+00,	3.35000000e-01],
							[3.51758794e-02,	7.14974874e+01],
							[7.33944954e-02,	4.01192661e+01]])

In	[87]:

#	hpstack	the	2	np.arrays	to	combine;	each	inner	list	contains	the	information	of	a	single	user

X_new	=	np.hstack((X,	numbers))
Y	=	df_number['mbti_personality'].to_numpy()

X_new

STEP	2

We	split	the	data	into	training	and	test	sets,	as	we	did	with	the	previous	model.	We	also	train	the	SVM	and	predict	the	same	way	we	did	with	the	model
above.

In	[88]:

#	train	and	test	sets

num_train_X,	num_test_X,	num_train_Y,	num_test_Y	=	train_test_split(X_new,	Y,	test_size	=	0.2,	random_state	=	100
)

#	clf

num_clf	=	train_SVM(num_train_X,	num_train_Y)

#	predict	

num_predicted_train_Y	=	num_clf.predict(num_train_X)
num_predicted_test_Y	=	num_clf.predict(num_test_X)

In	[89]:

#	training-set	result

print(classification_report(num_train_Y,	num_predicted_train_Y))

Out[87]:

array([[0.00000000e+00,	0.00000000e+00,	0.00000000e+00,	...,
								0.00000000e+00,	4.89075203e-01,	7.40929685e-02],
							[0.00000000e+00,	0.00000000e+00,	0.00000000e+00,	...,
								0.00000000e+00,	2.04283769e-01,	4.96193525e-02],
							[0.00000000e+00,	0.00000000e+00,	0.00000000e+00,	...,
								0.00000000e+00,	2.68292683e-01,	2.75051540e-02],
							...,
							[0.00000000e+00,	0.00000000e+00,	0.00000000e+00,	...,
								0.00000000e+00,	0.00000000e+00,	2.47500653e-06],
							[2.32148208e-01,	0.00000000e+00,	0.00000000e+00,	...,
								0.00000000e+00,	4.28974139e-02,	5.28229100e-04],
							[0.00000000e+00,	0.00000000e+00,	0.00000000e+00,	...,
								0.00000000e+00,	8.95054822e-02,	2.96404315e-04]])

														precision				recall		f1-score			support

								enfj							0.75						0.76						0.75							262
								enfp							0.62						0.85						0.72							334
								entj							0.86						0.68						0.76							208
								entp							0.98						0.50						0.66							181
								esfj							1.00						0.19						0.32								63
								esfp							1.00						0.08						0.14								39
								estj							1.00						0.41						0.59								70
								estp							1.00						0.05						0.10								20
								infj							0.57						0.95						0.71							403
								infp							0.68						0.80						0.74							308
								intj							0.69						0.91						0.78							367
								intp							0.90						0.66						0.76							233
								isfj							1.00						0.41						0.58							123
								isfp							1.00						0.08						0.15								51
								istj							1.00						0.28						0.44								89
								istp							1.00						0.05						0.10								37

				accuracy																											0.70						2788
			macro	avg							0.88						0.48						0.52						2788
weighted	avg							0.77						0.70						0.68						2788

In	[90]:

conf_mat_train	=	confusion_matrix(num_train_Y,	num_predicted_train_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	mbtis).plot();
fig	=	disp.figure_
fig.set_figwidth(20)
fig.set_figheight(10)	

In	[91]:

#	test-set	result

print(classification_report(num_test_Y,	num_predicted_test_Y))

														precision				recall		f1-score			support

								enfj							0.11						0.10						0.10								61
								enfp							0.23						0.33						0.27								94
								entj							0.14						0.11						0.12								37
								entp							0.33						0.05						0.08								62
								esfj							0.00						0.00						0.00								16
								esfp							0.00						0.00						0.00									7
								estj							0.00						0.00						0.00								14
								estp							0.00						0.00						0.00									6
								infj							0.14						0.39						0.21								85
								infp							0.16						0.16						0.16								80
								intj							0.22						0.34						0.27								88
								intp							0.24						0.08						0.12								60
								isfj							0.00						0.00						0.00								37
								isfp							0.00						0.00						0.00									9
								istj							0.00						0.00						0.00								36
								istp							0.00						0.00						0.00									6

				accuracy																											0.18							698
			macro	avg							0.10						0.10						0.08							698
weighted	avg							0.16						0.18						0.15							698

In	[92]:

conf_mat_test	=	confusion_matrix(num_test_Y,	num_predicted_test_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_test,	display_labels	=	mbtis).plot();
fig	=	disp.figure_
fig.set_figwidth(20)
fig.set_figheight(10)

We	see	that	our	new	model	that	includes	the	numerical	features	did	not	improve	the	model	by	at	all.

For	the	prediction	on	the	training	set,	we	achieved	an	accuracy	of	70%.	For	the	prediction	on	the	test	set,	we	achieved	an	accuracy	of	18%.	Both
percentages	are	around	the	same	as	the	prediction	accuracies	of	the	model	that	used	only	the	tweets.	We	believe	that	this	model	also	does	not	perform
well	for	the	same	reason	that	the	first	model	did	not:	there	are	not	enough	observations	for	certain	types,	so	the	model	does	not	have	a	substantial	corpus
to	learn	from	for	these	types,	leading	to	inaccurate	predictions.	As	with	the	previous	model,	we	see	from	the	 support 	column	of	both	classification
reports	that	certain	types	are	very	underrepresented	in	both	sets.	From	the	test	set's	classification	report,	we	see	that	this	model,	as	with	the	previous
model,	did	not	classify	any	observations	into	the	categories	whose	support	is	less	than	50	observations.

Similar	the	previous	model,	when	we	look	at	the	vertical	columns	of	the	confusion	matrix	plots	for	this	model,	we	can	see	that	the	model	tends	to	only
classify	tweets	as	one	of	the	5	types	with	the	most	observations	in	the	dataset	(INFP,	ENFP,	INFJ,	ENFJ,	ISFJ).	This	similarity	between	the	results	of	the	2
models	may	imply	that	the	numerical	features	of	 mean_retweet_count 	and	 mean_media_count 	are	not	particularly	helpful	in	predicting	MBTI	in
this	specific	case.

III.	Simplified	prediction	model	using	tweets	to	classify	I/E

STEP	1

Now,	we	attempt	to	simplify	our	model	to	see	if	it	will	be	able	to	predict	just	 introvert 	versus	 extrovert 	classifications.	By	simplifying	the	prediction
as	such,	we	are	able	to	just	have	2	categories	for	the	model	to	classify	into,	with	each	category	more	evenly	distributed	than	the	if	used	all	16	types	as
categories.	We	see	that	there	are	2021	 introvert 	users	and	1485	 extrovert 	users,	which	is	about	a	55/45	split.	Although	not	perfectly	even,	this
distribution	of	observations	in	categories	is	much	more	substantial	than	the	previous	models'.

In	[93]:

#	function	to	classify	introvert	and	extrovert

def	ie_classify(string):
				if	string[0]	==	'i':
								output	=	'introvert'
				else:
								output	=	'extrovert'
				
				return	output

In	[94]:

df_predict['i_e']	=	df_predict['mbti_personality'].apply(ie_classify)
df_predict.head()

In	[95]:

#	check	distribution	of	introverts	and	extroverts	in	df

df_predict['i_e'].value_counts()

In	[96]:

#	vectorize	tweets	and	get	outcome	variable	as	np.array

ie_X	=	tfidf.fit_transform(df_predict['merged_tweets']).toarray()
ie_Y	=	df_predict['i_e'].to_numpy()

In	[97]:

#	train	and	test	sets
ie_train_X,	ie_test_X,	ie_train_Y,	ie_test_Y	=	train_test_split(ie_X,	ie_Y,	test_size	=	0.2,	random_state	=	200)

#	train	SVM
ie_clf	=	train_SVM(ie_train_X,	ie_train_Y)

#	predict
ie_predicted_train_Y	=	ie_clf.predict(ie_train_X)
ie_predicted_test_Y	=	ie_clf.predict(ie_test_X)

In	[98]:

#	training-set	accuracy

print(classification_report(ie_train_Y,	ie_predicted_train_Y))

Out[94]:

id mbti_personality merged_tweets i_e

1 907848145 infp exolselcaday	since	talking	suh	friendly	remind... introvert

2 97687049 infp media	feeding	fear	coronavirus	tell	us	amount	... introvert

3 63170384 infp supergirl	really	missed	mark	kara	lena	episode... introvert

4 33811202 infp comic	view	bet	comin	six	nights	week	getcha	la... introvert

5 236506960 infp resigntrump	data	beautiful	reddit	sure	accurat... introvert

Out[95]:

introvert				2012
extrovert				1474
Name:	i_e,	dtype:	int64

														precision				recall		f1-score			support

			extrovert							0.86						0.70						0.77						1188
			introvert							0.80						0.92						0.86						1600

				accuracy																											0.82						2788
			macro	avg							0.83						0.81						0.81						2788
weighted	avg							0.83						0.82						0.82						2788

In	[99]:

ies	=	df_predict.i_e.unique().tolist()

conf_mat_train	=	confusion_matrix(ie_train_Y,	ie_predicted_train_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	ies).plot();
fig	=	disp.figure_
fig.set_figwidth(10)
fig.set_figheight(10)	

In	[100]:

#	test-set	accuracy

print(classification_report(ie_test_Y,	ie_predicted_test_Y))

														precision				recall		f1-score			support

			extrovert							0.45						0.36						0.40							286
			introvert							0.61						0.70						0.65							412

				accuracy																											0.56							698
			macro	avg							0.53						0.53						0.52							698
weighted	avg							0.54						0.56						0.55							698

In	[101]:

conf_mat_test	=	confusion_matrix(ie_test_Y,	ie_predicted_test_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_test,	display_labels	=	ies).plot();
fig	=	disp.figure_
fig.set_figwidth(10)
fig.set_figheight(10)

This	model	has	a	training	accuracy	of	82%	and	a	test	accuracy	of	56%.	As	compared	to	the	previous	two	models,	the	accuracies	have	improved	quite	a
bit.	We	see	form	both	classification	reports	that	each	category	has	much	more	evenly	distributed	 support 	columns	than	the	previous	2	models,	which
results	in	higher	prediction	accuracies.

From	the	training	set	confusion	matrix,	we	see	that	both	categories	have	higher	true	positive	rates	(along	the	diagonal)	than	inaccurate	predictions	on	the
off-diagonal.	The	training	set	confusion	matrix	is	also	much	closer	to	the	ideal	one	(yellow	along	the	diagonal,	purple	elsewhere)	than	the	previous	models'
training	set	confusion	matrix	plots	were.	On	the	test	set	confusion	matrix,	 extrovert 	has	a	high	true	positive	count,	while	for	the	 introvert
category,	117	were	categorized	correctly	as	 introvert 	and	135	were	incorrectly	categorized	as	 extrovert ;	thus,	the	model	incorrectly	predicts	an	
introvert 	as	 extrovert 	more	times	than	it	predicts	 introvert 	correctly.

We	can	also	see	from	both	confusion	matrix	plots	that	the	model	tends	to	classify	tweets	as	 extrovert 	rather	than	 introvert ,	which	is	interesting
since	the	data	consists	of	more	introverts,	as	we	saw	above	using	 value_counts .

IV.	Simplified	prediction	model	using	tweets	to	classify	F/T

STEP	1

We	apply	the	same	simplified	model	structure	as	the	I/E	classfication	model	to	see	if	it	will	be	able	to	predict	 feeling -led	individuals	versus	
thinking -led	individuals.	Again,	we	will	only	have	2	categories	for	the	model	to	classify	into,	with	the	categories	once	again	having	about	a	55/45	split.
As	we	see	below,	there	are	1989	users	that	identify	as	being	led	by	 feeling 	and	1517	users	that	identify	as	being	led	by	 thinking .

Note	that	we	have	skipped	over	the	second	letter	in	the	MBTI	classification,	 sensation 	versus	 intuition .	About	81%	of	the	users	had	'N'
(intuition)	as	their	second	letter	and	the	model	predicted	all	tweets	into	the	 intuition 	category	and	none	into	the	 sensation 	category,	which
achieved	an	81%	test	accuracy.	Although	this	percentage	is	much	higher	than	any	of	the	other	models,	the	result	is	not	meaningful	because	it	is	simply	a
consequence	of	skewed	distributions	amongst	the	2	categories.

In	[102]:

#	function	to	classify	feeling	and	thinking

def	ft_classify(string):
				if	string[2]	==	'f':
								output	=	'feeling'
				else:
								output	=	'thinking'
				
				return	output

In	[103]:

df_predict['f_t']	=	df_predict['mbti_personality'].apply(ft_classify)
df_predict.head()

In	[104]:

#	check	distribution	of	introverts	and	extroverts	in	df

df_predict['f_t'].value_counts()

In	[105]:

#	vectorize	tweets	and	get	outcome	variable	as	np.array

ft_X	=	tfidf.fit_transform(df_predict['merged_tweets']).toarray()
ft_Y	=	df_predict['f_t'].to_numpy()

In	[106]:

#	train	and	test	sets
ft_train_X,	ft_test_X,	ft_train_Y,	ft_test_Y	=	train_test_split(ft_X,	ft_Y,	test_size	=	0.2,	random_state	=	200)

#	train	SVM
ft_clf	=	train_SVM(ft_train_X,	ft_train_Y)

#	predict
ft_predicted_train_Y	=	ft_clf.predict(ft_train_X)
ft_predicted_test_Y	=	ft_clf.predict(ft_test_X)

In	[107]:

#	training-set	accuracy

print(classification_report(ft_train_Y,	ft_predicted_train_Y))

Out[103]:

id mbti_personality merged_tweets i_e f_t

1 907848145 infp exolselcaday	since	talking	suh	friendly	remind... introvert feeling

2 97687049 infp media	feeding	fear	coronavirus	tell	us	amount	... introvert feeling

3 63170384 infp supergirl	really	missed	mark	kara	lena	episode... introvert feeling

4 33811202 infp comic	view	bet	comin	six	nights	week	getcha	la... introvert feeling

5 236506960 infp resigntrump	data	beautiful	reddit	sure	accurat... introvert feeling

Out[104]:

feeling					1972
thinking				1514
Name:	f_t,	dtype:	int64

														precision				recall		f1-score			support

					feeling							0.83						0.93						0.88						1577
				thinking							0.89						0.74						0.81						1211

				accuracy																											0.85						2788
			macro	avg							0.86						0.84						0.84						2788
weighted	avg							0.86						0.85						0.85						2788

In	[108]:

fts	=	df_predict.f_t.unique().tolist()

conf_mat_train	=	confusion_matrix(ft_train_Y,	ft_predicted_train_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	fts).plot();
fig	=	disp.figure_
fig.set_figwidth(10)
fig.set_figheight(10)

In	[109]:

#	test-set	accuracy

print(classification_report(ft_test_Y,	ft_predicted_test_Y))

														precision				recall		f1-score			support

					feeling							0.67						0.76						0.71							395
				thinking							0.62						0.50						0.55							303

				accuracy																											0.65							698
			macro	avg							0.64						0.63						0.63							698
weighted	avg							0.64						0.65						0.64							698

In	[110]:

conf_mat_train	=	confusion_matrix(ft_test_Y,	ft_predicted_test_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	fts).plot();
fig	=	disp.figure_
fig.set_figwidth(10)
fig.set_figheight(10)

This	model	has	a	training	accuracy	of	85%	and	a	test	accuracy	of	65%.	As	compared	to	the	previous	I/E	classification	model,	the	accuracies	have
improved	a	little	more;	the	accuracies	have	improved	significantly	as	compared	the	first	2	models.	Again,	from	both	classification	reports	we	see	that	each
category	has	much	more	evenly	distributed	 support 	columns	than	the	first	2	models,	which	results	in	higher	prediction	accuracies.

From	the	training	set	confusion	matrix,	we	see	that	both	categories	have	higher	true	positive	rates	(along	the	diagonal)	than	inaccurate	predictions	on	the
off-diagonal.	The	training	set	confusion	matrix	is	quite	close	to	the	ideal	plot	(yellow	along	the	diagonal,	purple	elsewhere).	On	the	test	set	confusion
matrix,	we	see	that	both	categories	have	higher	true	postitive	counts	than	incorrect	classification	counts.

We	can	also	see	from	both	confusion	matrix	plots	that	the	model	tends	to	classify	tweets	as	 feeling 	rather	than	 thinking ,	which	is	consistent	with
the	distribution	of	observations	in	these	categories	since	the	data	consists	of	more	 feeling -led	individuals,	as	we	saw	above	using	 value_counts .

V.	Simplified	prediction	model	using	tweets	to	classify	J/P

STEP	1

Finally,	we	apply	the	same	simplified	model	structure	as	the	I/E	and	F/T	classfication	models	to	see	if	it	will	be	able	to	predict	 judgement -led	individuals
versus	 perception -led	individuals.	Again,	we	will	only	have	2	categories	for	the	model	to	classify	into,	with	the	categories,	once	again,	having	about	a
55/45	split.	As	we	see	below,	there	are	1964	users	that	identify	as	being	led	by	 judgement 	and	1542	users	that	identify	as	being	led	by	 perception .

In	[111]:

#	function	to	classify	feeling	and	thinking

def	jp_classify(string):
				if	string[3]	==	'j':
								output	=	'judgement'
				else:
								output	=	'perception'
				
				return	output

In	[112]:

df_predict['j_p']	=	df_predict['mbti_personality'].apply(jp_classify)
df_predict.head()

In	[113]:

#	check	distribution	of	introverts	and	extroverts	in	df

df_predict['j_p'].value_counts()

In	[114]:

#	vectorize	tweets	and	get	outcome	variable	as	np.array

jp_X	=	tfidf.fit_transform(df_predict['merged_tweets']).toarray()
jp_Y	=	df_predict['j_p'].to_numpy()

In	[115]:

#	train	and	test	sets
jp_train_X,	jp_test_X,	jp_train_Y,	jp_test_Y	=	train_test_split(jp_X,	jp_Y,	test_size	=	0.2,	random_state	=	200)

#	train	SVM
jp_clf	=	train_SVM(jp_train_X,	jp_train_Y)

#	predict
jp_predicted_train_Y	=	jp_clf.predict(jp_train_X)
jp_predicted_test_Y	=	jp_clf.predict(ft_test_X)

In	[116]:

#	training-set	accuracy

print(classification_report(jp_train_Y,	jp_predicted_train_Y))

Out[112]:

id mbti_personality merged_tweets i_e f_t j_p

1 907848145 infp exolselcaday	since	talking	suh	friendly	remind... introvert feeling perception

2 97687049 infp media	feeding	fear	coronavirus	tell	us	amount	... introvert feeling perception

3 63170384 infp supergirl	really	missed	mark	kara	lena	episode... introvert feeling perception

4 33811202 infp comic	view	bet	comin	six	nights	week	getcha	la... introvert feeling perception

5 236506960 infp resigntrump	data	beautiful	reddit	sure	accurat... introvert feeling perception

Out[113]:

judgement					1959
perception				1527
Name:	j_p,	dtype:	int64

														precision				recall		f1-score			support

			judgement							0.80						0.92						0.85						1576
		perception							0.87						0.70						0.77						1212

				accuracy																											0.82						2788
			macro	avg							0.83						0.81						0.81						2788
weighted	avg							0.83						0.82						0.82						2788

In	[117]:

jps	=	df_predict.j_p.unique().tolist()

conf_mat_train	=	confusion_matrix(jp_train_Y,	jp_predicted_train_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	jps).plot();
fig	=	disp.figure_
fig.set_figwidth(10)
fig.set_figheight(10)

In	[118]:

#	test-set	accuracy

print(classification_report(jp_test_Y,	jp_predicted_test_Y))

														precision				recall		f1-score			support

			judgement							0.59						0.69						0.64							383
		perception							0.52						0.41						0.46							315

				accuracy																											0.57							698
			macro	avg							0.56						0.55						0.55							698
weighted	avg							0.56						0.57						0.56							698

In	[119]:

conf_mat_train	=	confusion_matrix(jp_test_Y,	jp_predicted_test_Y,	sample_weight	=	None)

disp	=	ConfusionMatrixDisplay(conf_mat_train,	display_labels	=	jps).plot();
fig	=	disp.figure_
fig.set_figwidth(10)
fig.set_figheight(10)

This	model	has	a	training	accuracy	of	82%	and	a	test	accuracy	of	57%.	As	compared	to	the	previous	F/T	classification	model,	the	accuracies	have
decreased	a	little;	however,	these	accuracies	have	improved	significantly	as	compared	the	first	2	models.	Again,	from	both	classification	reports	we	see
that	each	category	has	much	more	evenly	distributed	 support 	columns	than	the	first	2	models,	which	results	in	higher	prediction	accuracies.	We	also
note	that	for	this	model	specifically,	the	test	set	support	is	almost	a	50/50	split,	which	is	more	evenly	split	than	both	the	I/E	model	and	the	F/T	model.

From	the	training	set	confusion	matrix,	we	see	that	both	categories	have	higher	true	positive	rates	(along	the	diagonal)	than	inaccurate	predictions	on	the
off-diagonal.	The	training	set	confusion	matrix	is	once	again	quite	close	to	the	ideal	plot	(yellow	along	the	diagonal,	purple	elsewhere).	On	the	test	set
confusion	matrix,	we	see	that	both	categories	have	higher	true	postitive	counts	than	incorrect	classification	counts.

We	can	also	see	from	both	confusion	matrix	plots	that	the	model	tends	to	classify	tweets	as	 perception 	rather	than	 judgement ,	which	is	interesting
since	the	data	consists	of	more	 judgement -led	individuals,	as	we	saw	above	using	 value_counts .

Ethics	&	Privacy
The	data	we	have	used	contain	some	privacy	concerns	to	Twitter	users.	The	data	used	has	been	collected	from	Twitter	without	informing	users,	which
may	lead	to	privacy	issues	for	the	individuals	whose	data	is	present	in	this	project.	However,	since	the	data	is	also	anonymous	and	we	are	not	aware	of
exactly	whose	data	was	collected,	it	may	not	be	as	much	of	a	concern	as	it	seems.

We	would	like	to	note	that	from	our	research,	we	do	not	believe	it	is	possible	to	scrape,	share,	or	use	data	from	Twitter	accounts	that	are	private,	and	thus
all	the	information	from	the	dataset	are	publicly	available	data	that	users	have	shared	on	public	accounts.	Before	cleaning	the	dataset,	it	contained
possible	personally	identifiable	information	because	it	included	variables	such	as	name	(as	identified	on	the	user’s	profile),	username,	location	of	the	user
(if	provided	on	their	profile),	and	the	user’s	bio	description;	all	of	these	variables	may	or	may	not	contain	real	information	about	the	user	that	can	lead	to
their	identification.	In	order	to	ensure	the	privacy	of	these	users,	we	dropped	all	of	these	columns	to	maintain	anonymity	of	the	users	throughout	the
project.	Another	issue	of	privacy	that	may	be	potentially	problematic	is	that	the	content	of	the	tweets	themselves	may	contain	personally	identifiable
information,	which	we	have	tried	to	handle	by	filtering	out	keywords	that	may	be	indicative	of	this	kind	of	information.

A	potential	bias	in	our	dataset	is	that	people’s	online	personas	may	not	be	the	same	as	their	real	life	personas,	leading	to	inaccuracies	in	their	MBTI
personality	types.	We	may	also	only	utilize	tweets	written	in	English	if	we	perform	sentiment	analysis,	which	may	skew	the	sample	and	not	fully	represent
the	population	of	users	on	twitter.	Although	the	datasets	we	use	may	be	open	for	public	use,	there	may	be	possible	concerns	regarding	the	collecting	of
data	from	the	dataset.	Due	to	the	self-reporting	system,	the	testimonies	from	each	individual	may	be	considered	to	be	inaccurate.	However,	the	MBTI
scale	itself	is	not	an	accurate	system	for	determining	an	individual’s	personality.	The	Myers	Briggs	Personality	Test	is	typically	for	those	who	are	interested
in	seeking	after	a	possible	label	for	their	identity.	MBTI	are	based	on	the	user's	personal	assumptions	about	themselves	that	are	not	influenced	by	others.
MBTI	as	a	whole	is	not	a	complete	description	of	an	individual	and	is	simply	a	speculation	and	overview	of	a	person’s	character.

Conclusion	&	Discussion
Our	question	of	interest	is:	Can	we	predict	an	individual's	MBTI	classification	based	on	the	content	they	share	on	Twitter,	specifically	their	word	choice,
text	sentiment	and	user	tweet	statistics?	The	results	of	our	analysis	indicate	that	the	relationship	between	the	variables	analyzed	and	a	user’s	MBTI	type	is
inconclusive.	The	dataset	we	used	contains	information	from	8328	Twitter	users	who	have	self-reported	their	MBTI	in	their	profiles.	In	our	data	cleaning
process,	we	filtered	the	tweets	to	only	keep	the	users	whose	first	5	tweets	are	all	in	English.	We	also	kept	the	several	numerical	variables	to	see	if	these
features	could	be	used	in	conjunction	with	the	tweet	data	to	predict	a	user's	MBTI.

During	EDA,	we	first	explored	the	number	of	observations	of	each	type	in	our	cleaned	dataset,	and	noted	that	there	is	quite	a	discrepency	in	the
distribution	of	types.	We	then	plotted	and	saw	that	average	retweet	count	and	average	media	count	showed	explicit	variablility	between	the	types	that
could	be	useful	in	our	prediction	model.	We	then	proceeded	to	investigate	any	relationships	between	text	sentiment	of	the	tweets	and	MBTI	classification.
We	found	that	certain	types	have	a	significantly	higher	negative	sentiment	metric	than	others,	while	the	positive	sentiment	metric	was	not	as	different
among	types;	we	also	found	that	several	types	have	certain	unique	words	in	their	top	20	most	frequently	used	words.	After	exploring	the	data,	we	created
a	model	that	takes	in	an	individual's	tweets	and	predicts	their	MBTI.	We	used	a	linear	SVM	and	a	TF-IDF	vectorizer	to	create	several	different	prediction
models.	First,	we	created	a	model	that	attempts	to	predicts	MBTI	using	tweets	only	and	a	model	that	attempts	to	predict	MBTI	using	both	tweets	and	the
numerical	features.	Both	models	performed	rather	poorly	with	low	accuracies	due	to	there	being	many	categories	but	an	uneven	distribution	of
observations	per	type.	Then,	we	tried	to	simplify	the	scope	of	our	analysis	by	using	SVM	to	create	a	model	to	predict	introvert	versus	extrovert
classification	only	using	the	tweets,	which	performed	better	at	about	60%	test	accuracy.	Thus,	we	saw	that	less	categories	allowed	us	to	have	more
observations	in	each	category,	and	more	evenly	distributed	categories,	which	yields	better	results	from	the	model	than	trying	to	classify	into	all	16
categories.

After	analyzing	the	results	of	our	model,	we	were	unable	to	prove	our	hypothesis	that	an	individual's	MBTI	can	be	predicted	using	their	Twitter	content,
which	is	likely	due	to	the	various	limitations	in	our	procedure.	First,	we	filtered	the	dataset	to	include	only	users	whose	first	5	tweets	are	in	English,	which
decreased	the	amount	of	words	available	in	the	corpus	for	the	model	to	learn	from.	After	filtering,	the	size	of	our	observations	went	from	around	7800	to
around	3500.	This,	if	we	increased	the	amount	of	tweets	per	user	in	order	to	enlarge	the	corpus,	we	would	lose	more	observations	due	to	the	English-only
constraint.	The	other	limitation	of	not	having	enough	observations	per	type	is	a	direct	result	of	the	corpus-size	versus	observation-size	trade-off.	Even	at
only	5	tweets	per	user,	each	MBTI	category	did	not	have	equal	amounts	of	observations,	with	over	1/4	of	types	having	less	than	100	observations.	There
are	16	total	MBTI	categories,	and	thus	we	did	not	have	enough	users	per	type	to	make	more	accurate	predictions.

While	we	were	unable	to	find	substantial	results	using	these	methods,	when	we	analyzed	positive	and	negative	sentiments	during	EDA,	we	were	able	to
find	some	correlation	between	MBTI	and	text	sentiment.	From	these	results	in	EDA,	we	do	still	believe	that	the	relationship	between	MBTI	type	and	text
content	of	tweets	can	be	further	explored	using	more	data	and	other	modelling	techniques	besides	SVM.	It	is	important	to	note,	however,	that	MBTI
classifications	are	likely	to	be	inaccurate	in	defining	an	individual’s	personality.	MBTI	types	are	highly	subjective	and	biased	considering	they	generate
solely	16	categories	for	the	vast	number	of	personalities	that	exist	within	7.8	billion	inhabitants	across	the	globe.	By	choosing	to	explore	this	topic,	we	have
understood	and	accepted	the	possibility	of	unreliable	predictions.

Team	Contributions
Ashley	Ho:	Data	Cleaning,	Data	Analysis	and	Results
Alexa	Barbosa:	Background	and	Prior	Work,	Dataset	Info,	Frequency	Distribution	(EDA)
Ariann	Manlangit:	Background	Info,	Research	Question,	Script,	Slides
Akhila	Nivarthi:	Ethics	and	Privacy,	Conclusion	&	Discussion,	Script
Audrey	Chung:	Found	Data,	Ethics	and	Privacy,	Conclusion	&	Discussion,	Data	Analysis

All	team	members	were	present	at	meetings	and	thoroughly	communicated	with	one	another.

In	[]:

	

